
International Journal of Mass Spectrometry 214 (2002) 89–94

Improved method for designing a cylindrical
Zhang–Enke ion mirror

George E. Yefchak∗, Curt A. Flory

Agilent Laboratories, Agilent Technologies, 3500 Deer Creek Road, Palo Alto, CA 94304, USA

Received 28 August 2001; accepted 7 November 2001

Abstract

A series solution for the potential within a cylindrical, three-element Zhang–Enke ion mirror has been obtained. The only
simplification is that the small gaps between mirror elements are ignored. Automated function minimization by the simplex
method has been used to optimize the mirror region lengths and voltages. Flight times only along the central axis were used
here for convenience, but the potential can be calculated fully in three dimensions. The mirror designed by this method has
good focusing characteristics. Additional refinement could be obtained by optimization of three-dimensional ion trajectories
starting from the one-dimensional parameters obtained here. (Int J Mass Spectrom 214 (2002) 89–94) © 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Zhang and Enke described a new type of ion mir-
ror [1–3] which is comprised of only three substantive
elements and a single grid which covers the aperture
(see Fig. 1). Their theoretical studies indicate that the
mirror performance would be at least as good as a con-
ventional two-stage linear-field mirror. Recently such
a mirror has been tested in our laboratory, and initial
results indicate that the mirror performs as expected,
at least as well as a two-grid Mamyrin-style mirror [4].

To design the three-element mirror (that is, to as-
sign values to the lengthsa, b, andc, the diameterd,
and the voltagesV1 and V2), Zhang and Enke used
the SIMION 3D1 program to calculate the electrical
potential inside the mirror for a set of test parameters
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and then simulated ion trajectories through it. The test
parameters were varied manually using the simplex
method [5], then new potential and trajectory simula-
tions were run. Eventually a “best” set of conditions
was determined. We have now obtained a series so-
lution for the mirror potential and have developed
an automated method for optimization of the mirror
parameters.

2. Series solution for the mirror potential

To obtain the potential in the Zhang–Enke mirror,
we introduce the following notation related to Fig. 1:

z1 = a, z2 = a + b,

L = a + b + c, r = d

2
.
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Fig. 1. The Zhang–Enke mirror, containing three cylindrical ele-
ments. (Other cross-section shapes are possible as well.)

Thez-axis is oriented so thatz = 0 lies at the entrance
grid. The desired potential is the solution to Laplace’s
equation, shown here in cylindrical coordinates:
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For the axially symmetric problem, the potential is
independent ofθ . Separability of Laplace’s equa-
tion allows the potential to be written asΦ(ρ, z) ≡
R(ρ)Z(z), and the partial differential equation to be
written as a pair of ordinary differential equations,

d2Z

dZ2
− k2Z = 0

d2R

dR2
+ 1

ρ

dR

dρ
+ k2R = 0, (2)

wherek2 is the constant of separation.
The solutions to the ordinary differential equations

have the usual form, depending upon the sign of the

Fig. 2. The two sub-problems and their associated parameters. (a) Grounded cylinder with face atV0; (b) Interior ring atV0 with grounded
exterior.

separation constant,k2,

for k2 > 0 : Z ∼
{

sinhkz
coshkz

}
, R ∼

{
J0(kρ)

N0(kρ)

}

for k2 < 0 : Z ∼
{

sinkz
coskz

}
, R ∼

{
I0(kρ)

K0(kρ)

} ,

whereJ0 (N0) is the zeroth order Bessel function of
the first (second) kind, andI0 (K0) is the zeroth order
modified Bessel function of the first (second) kind.

The problem is divided into the two sub-problems
illustrated in Fig. 2. Linear superposition of solutions
is used to find the general solution.

2.1. Sub-problem A—grounded cylinder

Here the potential on the side wall (ρ = r) is zero,
so the Bessel functionJ0(knρ) is required for the radial
part of the solution. Also, the potential is zero atz =
0, leading to sinh(knz) for the z-dependent part of the
solution. The potential takes the form

V (ρ, z) =
∞∑
n=1

An sinh(knz)J0(knρ) (3)

wherekn are the solutions of the determining equation
J0(knr) = 0; i.e., kn = X0n/r with X0n the nth root
of J0(x). At the top face, the potential isV0, thus

V (ρ, z = L)

= V0 =
∞∑
n=1

An sinh

(
X0n

r
L

)
J0

(
X0n

r
ρ

)
. (4)
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To determine the expansion coefficients, Eq. (4) is
multiplied by ρJ0((X0m/r)ρ) and integrated overρ
from 0 tor. The orthogonality of the Bessel functions
is used to simply determine the coefficients of the
expansion:

Am = 2V0

X0mJ1(X0m)sinh((X0m/r)L)
. (5)

The solution to sub-problem A is thus given by

V (ρ, z)=
∞∑
n=1

2V0

X0nJ1(X0n)sinh((X0n/r)L)

× sinh

(
X0n

r
z

)
J0

(
X0n

r
ρ

)
. (6)

2.2. Sub-problem B—interior ring

For this configuration, the potentials atz = 0 and
z = L are zero. The required form for the solution is
thusZ(z) ∼ sin(knz), wherekn = nπ/L. The require-
ment that the solution be finite atρ = 0 specifies the
radial part of the solution to be the modified Bessel
function of the first kind. The full solution then has
the form

V (ρ, z) =
∞∑
n=1

An sin
(nπ
L

z
)
I0

(nπ
L

ρ
)
. (7)

At the edge of the cylinder,V (ρ = r, z) = V0(z),

V0(z) =
∞∑
n=1

An sin
(nπ
L

z
)
I0

(nπ
L

r
)

(8)

whereV0(z) is constant and equal toV0 for z1 < z <

z2, and zero elsewhere.
To determine the expansion coefficients for this

problem, Eq. (8) is multiplied by sin(mπz/L) and
integrated overz from 0 to L. The orthogonality of
the sine functions is used to simply determine the
coefficients of the expansion:

Am = 2V0[cos(mπz1/L) − cos(mπz2/L)]

mπI0(mπr/L)
(9)

The solution to sub-problem B is thus given by

V (ρ, z)=
∞∑
n=1

2V0[cos(nπz1/L) − cos(nπz2/L)]

nπI0(nπr/L)

× sin
(nπz

L

)
I0

(nπρ
L

)
. (10)

2.3. General solution

We combine the results of Eqs. (6) and (10) to obtain
the solution for the general problem shown in Fig. 3.

The potential over the entire volume of the structure
takes the form

V (ρ, z)= 2V1

π

∞∑
n=1

(cos(nπz1/L) − cos(nπz2/L))

nI0(nπr/L)
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(nπz

L

)
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(nπρ
L

)

+ 2V2

π

∞∑
n=1

(cos(nπz2/L) − (−1)n)

nI0(nπr/L)

× sin
(nπz

L

)
I0

(nπρ
L

)

+ 2V2

∞∑
n=1

sinh((X0n/r)z)J0((X0n/r)ρ)

X0nJ1(X0n)sinh((X0n/r)L)
.

(11)

The only simplification for this model is that the spac-
ing between the three elements is zero. In practice,
there are small gaps, e.g., 1 mm, between elements.
These gaps have a negligible effect, however, on the
field shape near the axis. An example potential calcu-
lated from Eq. (11) is shown in Fig. 4, using parame-

Fig. 3. The general problem and associated terms.
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Fig. 4. Potential calculated in the Zhang–Enke mirror with the following parameters:z1 = 0.119 m, z2 = 0.257 m, L = 0.288 m,
V1 = 1247 V,V2 = 1897 V, r = 0.149 m. Mirror element geometry and a grid of (arbitrary) 0.1-m diameter are indicated by thick lines.

Fig. 5. Potential along the central axis (ρ = 0) for the parameters detailed in Fig. 4 (thick line). The thin line shows the deviation from a
linear potential, as plotted in ref. [3].
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ters matching those published by Zhang and Enke [3].
Note that the solution could be expanded to include
additional mirror elements if desired.

To design the mirror segment lengths (a, b, andc)
and voltages, we are interested primarily in the field
shape along the central axis. Thus, settingρ to 0
yields the following simplified equation for the poten-
tial along the axis:

V (z, ρ = 0)= 2V1

π

∞∑
n=1

(cos(nπz1/L)−cos(nπz2/L)

nI0(nπr/L)

× sin
(nπz

L

)

+2V2

π

∞∑
n=1

(cos(nπz2/L)) − (−1)n

nI0(nπr/L)

× sin
(nπz

L

)

+ 2V2

∞∑
n=1

sinh((X0n/r)z)

X0nJ1(X0n)sinh((X0n/r)L)
.

(12)

Numerical evaluation of this expression is substan-
tially more convenient than simulation of the entire
field shape by SIMION 3D. The potential calculated
from Eq. (12) for the example case is shown in Fig. 5.
This plot closely matches the potential reported by
Zhang and Enke [3].

3. Optimization of mirror parameters

Ion flight times can be calculated into and out of
the mirror field along the central axis using standard
numerical integration methods. The flight time is
given by

Tmirror(v0) =
√

2m
∫ Xf

0

1√
((mv2

0)/2) − q(V (x))

dx.

(13)

Herev0 is the initial ion velocity into the mirror, and
V(x) is calculated from Eq. (12).

Flight time through the instrument is the sum of
flight times through the field-free and mirror regions;

thus T (v0) = Tff (v0) + Tmirror(v0). A properly de-
signed mirror will minimize the deviations in flight
time brought about by differing values ofv0. A re-
sponse function can be defined to indicate “quality”
of energy focus. To constrain the system to reasonable
size, the total mirror length,L, is fixed. Similarly,V2

is fixed at the maximum desired voltage. This leads to
a three-parameter optimization problem to select val-
ues forz1, z2, andV1. We define a response function,
F(M), as the sum of the squares of flight time de-
viations for several initial velocities, whereM is the
vector of mirror parameters{z1, z2, V1}, as shown in
Eq. (14).

F(M) =
n∑

i=1

[(T (vi,M) − T (v0,M))2] (14)

Our response function could be extended to include
flight times in the ion source or other regions, of
course. Typically, physical limits such as negative
lengths are avoided by assigning an invalid (e.g.,
very high) value toF(M) for disallowed parameters.
Automated simplex optimization or other numerical
function-minimization methods can be used to de-
termine the best parameters by finding the minimum
value forF(M).

Often the choice of starting point for a global
minimization problem is difficult. Zhang and Enke’s
previous work [3] suggested conditions for their op-
timization procedure, however, which work here as
well. In particular, for a system with lowest energy
of interestqVmin and maximum ion energy ofqVmax,
we begin with the assignmentsV1 = Vmin, z1 = L/4,
andz2 = 3z1. The value forV2 is fixed at 1.1×Vmax.

Once the optimization is accomplished, it would
be wise to study flight time with a three-dimensional
simulation such as that provided by SIMION 3D
in order to observe perturbations caused by field
non-uniformities across the mirror diameter. In fact,
the best solution is a compromise between our “ideal”
field calculated along the central axis and slightly
differing fields which bring non-axial ions into focus
(C.G. Enke, personal communication). Nevertheless,
the mirror parameters made rapidly available by the
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Fig. 6. Flight time deviations form/z = 100 as a function of initial energy for the optimized mirror.

series solution may yield satisfactory focusing, or at
least serve as an excellent starting point for enhanced
optimization in three dimensions.

3.1. Example

As an example, we consider an instrument with a
1-m field-free flight path, a cylindrical mirror of radius
r = 149 mm and lengthL = 288 mm, and ion energies
between 1300 and 1700 eV, withv0 corresponding to
1500 eV. Ion mass is arbitrarily chosen to be 100 u. We
neglect flight time in the source, thus calculatingTff (v)
as L/v and Tmirror from Eq. (13). For the response
function, Eq. (14), we choosen = 4 andvi values
corresponding to ion energies, in eV, of{1350, 1450,
1550, 1650}. We setV2 ≡ 1.1 × 1700= 1870 V and
begin withV1 at 1300 V,z1 at 288/4 = 72 mm andz2

at 3z1 = 216 mm. The following parameters are then
found to optimizeF(M):

z1 = 103 mm, z2 = 250 mm, V1 = 1266 V

Flight time deviations for these parameters are
shown in Fig. 6 as a function of initial ion energy.

The flight times fall within a 6-ns range for ions
within the optimized energy range (1350–1650 eV).
Even better focusing would be expected if flight times
in the ion source were considered.
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